3.2.50 \(\int \frac {a+b \log (c x^n)}{x^3 \sqrt {d+e x}} \, dx\) [150]

3.2.50.1 Optimal result
3.2.50.2 Mathematica [A] (verified)
3.2.50.3 Rubi [A] (verified)
3.2.50.4 Maple [F]
3.2.50.5 Fricas [F]
3.2.50.6 Sympy [F]
3.2.50.7 Maxima [F]
3.2.50.8 Giac [F]
3.2.50.9 Mupad [F(-1)]

3.2.50.1 Optimal result

Integrand size = 23, antiderivative size = 304 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=-\frac {b n \sqrt {d+e x}}{4 d x^2}+\frac {5 b e n \sqrt {d+e x}}{8 d^2 x}+\frac {7 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{8 d^{5/2}}+\frac {3 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2}{4 d^{5/2}}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}-\frac {3 b e^2 n \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{2 d^{5/2}}-\frac {3 b e^2 n \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )}{4 d^{5/2}} \]

output
7/8*b*e^2*n*arctanh((e*x+d)^(1/2)/d^(1/2))/d^(5/2)+3/4*b*e^2*n*arctanh((e* 
x+d)^(1/2)/d^(1/2))^2/d^(5/2)-3/4*e^2*arctanh((e*x+d)^(1/2)/d^(1/2))*(a+b* 
ln(c*x^n))/d^(5/2)-3/2*b*e^2*n*arctanh((e*x+d)^(1/2)/d^(1/2))*ln(2*d^(1/2) 
/(d^(1/2)-(e*x+d)^(1/2)))/d^(5/2)-3/4*b*e^2*n*polylog(2,1-2*d^(1/2)/(d^(1/ 
2)-(e*x+d)^(1/2)))/d^(5/2)-1/4*b*n*(e*x+d)^(1/2)/d/x^2+5/8*b*e*n*(e*x+d)^( 
1/2)/d^2/x-1/2*(a+b*ln(c*x^n))*(e*x+d)^(1/2)/d/x^2+3/4*e*(a+b*ln(c*x^n))*( 
e*x+d)^(1/2)/d^2/x
 
3.2.50.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 501, normalized size of antiderivative = 1.65 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\frac {-8 a d^{3/2} \sqrt {d+e x}-4 b d^{3/2} n \sqrt {d+e x}+12 a \sqrt {d} e x \sqrt {d+e x}+10 b \sqrt {d} e n x \sqrt {d+e x}+14 b e^2 n x^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-8 b d^{3/2} \sqrt {d+e x} \log \left (c x^n\right )+12 b \sqrt {d} e x \sqrt {d+e x} \log \left (c x^n\right )+6 a e^2 x^2 \log \left (\sqrt {d}-\sqrt {d+e x}\right )+6 b e^2 x^2 \log \left (c x^n\right ) \log \left (\sqrt {d}-\sqrt {d+e x}\right )-3 b e^2 n x^2 \log ^2\left (\sqrt {d}-\sqrt {d+e x}\right )-6 a e^2 x^2 \log \left (\sqrt {d}+\sqrt {d+e x}\right )-6 b e^2 x^2 \log \left (c x^n\right ) \log \left (\sqrt {d}+\sqrt {d+e x}\right )+3 b e^2 n x^2 \log ^2\left (\sqrt {d}+\sqrt {d+e x}\right )+6 b e^2 n x^2 \log \left (\sqrt {d}+\sqrt {d+e x}\right ) \log \left (\frac {1}{2}-\frac {\sqrt {d+e x}}{2 \sqrt {d}}\right )-6 b e^2 n x^2 \log \left (\sqrt {d}-\sqrt {d+e x}\right ) \log \left (\frac {1}{2} \left (1+\frac {\sqrt {d+e x}}{\sqrt {d}}\right )\right )-6 b e^2 n x^2 \operatorname {PolyLog}\left (2,\frac {1}{2}-\frac {\sqrt {d+e x}}{2 \sqrt {d}}\right )+6 b e^2 n x^2 \operatorname {PolyLog}\left (2,\frac {1}{2} \left (1+\frac {\sqrt {d+e x}}{\sqrt {d}}\right )\right )}{16 d^{5/2} x^2} \]

input
Integrate[(a + b*Log[c*x^n])/(x^3*Sqrt[d + e*x]),x]
 
output
(-8*a*d^(3/2)*Sqrt[d + e*x] - 4*b*d^(3/2)*n*Sqrt[d + e*x] + 12*a*Sqrt[d]*e 
*x*Sqrt[d + e*x] + 10*b*Sqrt[d]*e*n*x*Sqrt[d + e*x] + 14*b*e^2*n*x^2*ArcTa 
nh[Sqrt[d + e*x]/Sqrt[d]] - 8*b*d^(3/2)*Sqrt[d + e*x]*Log[c*x^n] + 12*b*Sq 
rt[d]*e*x*Sqrt[d + e*x]*Log[c*x^n] + 6*a*e^2*x^2*Log[Sqrt[d] - Sqrt[d + e* 
x]] + 6*b*e^2*x^2*Log[c*x^n]*Log[Sqrt[d] - Sqrt[d + e*x]] - 3*b*e^2*n*x^2* 
Log[Sqrt[d] - Sqrt[d + e*x]]^2 - 6*a*e^2*x^2*Log[Sqrt[d] + Sqrt[d + e*x]] 
- 6*b*e^2*x^2*Log[c*x^n]*Log[Sqrt[d] + Sqrt[d + e*x]] + 3*b*e^2*n*x^2*Log[ 
Sqrt[d] + Sqrt[d + e*x]]^2 + 6*b*e^2*n*x^2*Log[Sqrt[d] + Sqrt[d + e*x]]*Lo 
g[1/2 - Sqrt[d + e*x]/(2*Sqrt[d])] - 6*b*e^2*n*x^2*Log[Sqrt[d] - Sqrt[d + 
e*x]]*Log[(1 + Sqrt[d + e*x]/Sqrt[d])/2] - 6*b*e^2*n*x^2*PolyLog[2, 1/2 - 
Sqrt[d + e*x]/(2*Sqrt[d])] + 6*b*e^2*n*x^2*PolyLog[2, (1 + Sqrt[d + e*x]/S 
qrt[d])/2])/(16*d^(5/2)*x^2)
 
3.2.50.3 Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 280, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2792, 27, 2010, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx\)

\(\Big \downarrow \) 2792

\(\displaystyle -b n \int -\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) x^2+\sqrt {d} (2 d-3 e x) \sqrt {d+e x}}{4 d^{5/2} x^3}dx-\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b n \int \frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) x^2+\sqrt {d} (2 d-3 e x) \sqrt {d+e x}}{x^3}dx}{4 d^{5/2}}-\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}\)

\(\Big \downarrow \) 2010

\(\displaystyle \frac {b n \int \left (\frac {3 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) e^2}{x}-\frac {3 \sqrt {d} \sqrt {d+e x} e}{x^2}+\frac {2 d^{3/2} \sqrt {d+e x}}{x^3}\right )dx}{4 d^{5/2}}-\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d^{5/2}}+\frac {3 e \sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{4 d^2 x}-\frac {\sqrt {d+e x} \left (a+b \log \left (c x^n\right )\right )}{2 d x^2}+\frac {b n \left (3 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )^2+\frac {7}{2} e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )-6 e^2 \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right ) \log \left (\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )-\frac {d^{3/2} \sqrt {d+e x}}{x^2}-3 e^2 \operatorname {PolyLog}\left (2,1-\frac {2 \sqrt {d}}{\sqrt {d}-\sqrt {d+e x}}\right )+\frac {5 \sqrt {d} e \sqrt {d+e x}}{2 x}\right )}{4 d^{5/2}}\)

input
Int[(a + b*Log[c*x^n])/(x^3*Sqrt[d + e*x]),x]
 
output
-1/2*(Sqrt[d + e*x]*(a + b*Log[c*x^n]))/(d*x^2) + (3*e*Sqrt[d + e*x]*(a + 
b*Log[c*x^n]))/(4*d^2*x) - (3*e^2*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]*(a + b*Lo 
g[c*x^n]))/(4*d^(5/2)) + (b*n*(-((d^(3/2)*Sqrt[d + e*x])/x^2) + (5*Sqrt[d] 
*e*Sqrt[d + e*x])/(2*x) + (7*e^2*ArcTanh[Sqrt[d + e*x]/Sqrt[d]])/2 + 3*e^2 
*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]^2 - 6*e^2*ArcTanh[Sqrt[d + e*x]/Sqrt[d]]*L 
og[(2*Sqrt[d])/(Sqrt[d] - Sqrt[d + e*x])] - 3*e^2*PolyLog[2, 1 - (2*Sqrt[d 
])/(Sqrt[d] - Sqrt[d + e*x])]))/(4*d^(5/2))
 

3.2.50.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2010
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x] 
, x] /; FreeQ[{c, m}, x] && SumQ[u] &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) 
+ (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
 

rule 2792
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x] 
}, Simp[(a + b*Log[c*x^n])   u, x] - Simp[b*n   Int[SimplifyIntegrand[u/x, 
x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2] 
) || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x 
] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])
 
3.2.50.4 Maple [F]

\[\int \frac {a +b \ln \left (c \,x^{n}\right )}{x^{3} \sqrt {e x +d}}d x\]

input
int((a+b*ln(c*x^n))/x^3/(e*x+d)^(1/2),x)
 
output
int((a+b*ln(c*x^n))/x^3/(e*x+d)^(1/2),x)
 
3.2.50.5 Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{\sqrt {e x + d} x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^3/(e*x+d)^(1/2),x, algorithm="fricas")
 
output
integral((sqrt(e*x + d)*b*log(c*x^n) + sqrt(e*x + d)*a)/(e*x^4 + d*x^3), x 
)
 
3.2.50.6 Sympy [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int \frac {a + b \log {\left (c x^{n} \right )}}{x^{3} \sqrt {d + e x}}\, dx \]

input
integrate((a+b*ln(c*x**n))/x**3/(e*x+d)**(1/2),x)
 
output
Integral((a + b*log(c*x**n))/(x**3*sqrt(d + e*x)), x)
 
3.2.50.7 Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{\sqrt {e x + d} x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^3/(e*x+d)^(1/2),x, algorithm="maxima")
 
output
1/8*a*(3*e^2*log((sqrt(e*x + d) - sqrt(d))/(sqrt(e*x + d) + sqrt(d)))/d^(5 
/2) + 2*(3*(e*x + d)^(3/2)*e^2 - 5*sqrt(e*x + d)*d*e^2)/((e*x + d)^2*d^2 - 
 2*(e*x + d)*d^3 + d^4)) + b*integrate((log(c) + log(x^n))/(sqrt(e*x + d)* 
x^3), x)
 
3.2.50.8 Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{\sqrt {e x + d} x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^3/(e*x+d)^(1/2),x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)/(sqrt(e*x + d)*x^3), x)
 
3.2.50.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \sqrt {d+e x}} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x^3\,\sqrt {d+e\,x}} \,d x \]

input
int((a + b*log(c*x^n))/(x^3*(d + e*x)^(1/2)),x)
 
output
int((a + b*log(c*x^n))/(x^3*(d + e*x)^(1/2)), x)